
 Dynamics of false vacuum bubbles: beyond the thin shell approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP11(2009)016

(http://iopscience.iop.org/1126-6708/2009/11/016)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:34

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/11
http://iopscience.iop.org/1126-6708/2009/11/016/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
1
(
2
0
0
9
)
0
1
6

Published by IOP Publishing for SISSA

Received: August 10, 2009

Revised: September 16, 2009

Accepted: October 13, 2009

Published: November 5, 2009

Dynamics of false vacuum bubbles: beyond the thin

shell approximation

Jakob Hansen,a,b Dong-il Hwangc and Dong-han Yeomc

aDepartment of Physics, Waseda University,

Tokyo 169-8555, Japan
bAdvanced Research Team, KISTI,

Daejeon 305-806, Republic of Korea
cDepartment of Physics, KAIST,

Daejeon 305-701, Republic of Korea

E-mail: jakobidetsortehul@gmail.com, eastone83@gmail.com,

innocent@muon.kaist.ac.kr

Abstract: We numerically study the dynamics of false vacuum bubbles which are inside

an almost flat background; we assumed spherical symmetry and the size of the bubble is

smaller than the size of the background horizon. According to the thin shell approximation

and the null energy condition, if the bubble is outside of a Schwarzschild black hole, unless

we assume Farhi-Guth-Guven tunneling, expanding and inflating solutions are impossible.

In this paper, we extend our method to beyond the thin shell approximation: we include the

dynamics of fields and assume that the transition layer between a true vacuum and a false

vacuum has non-zero thickness. If a shell has sufficiently low energy, as expected from the

thin shell approximation, it collapses (Type 1). However, if the shell has sufficiently large

energy, it tends to expand. Here, via the field dynamics, field values of inside of the shell

slowly roll down to the true vacuum and hence the shell does not inflate (Type 2). If we add

sufficient exotic matters to regularize the curvature near the shell, inflation may be possible

without assuming Farhi-Guth-Guven tunneling. In this case, a wormhole is dynamically

generated around the shell (Type 3). By tuning our simulation parameters, we could find

transitions between Type 1 and Type 2, as well as between Type 2 and Type 3. Between

Type 2 and Type 3, we could find another class of solutions (Type 4). Finally, we discuss

the generation of a bubble universe and the violation of unitarity. We conclude that the

existence of a certain combination of exotic matter fields violates unitarity.
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1 Introduction

Our Universe experiences an accelerated expansion; also, our Universe seems to have had

a period of exponential expansion, so called inflation [1]. The simplest explanation of

these phenomena are to assume that our Universe is or was in a vacuum with non-zero

vacuum energy [2], as the vacuum energy effectively gives a cosmological constant. Af-

ter the discovery of landscape [3], it becomes natural to assume that there are a lot of

different vacua.

Once a complex potential structure is allowed, it is inevitable to include some kind of

quantum tunneling from one vacuum to other vacuum. Some authors have studied these

phenomena [4, 5]. For simplicity, we assume that the background is a positive false vacuum

with a small cosmological constant or an almost flat background. This de Sitter space

violates the energy conservation; thus any kinds of tunneling can be allowed in principle,

i.e., tunneling from low to high vacuum is possible and of course, vice versa [5].

If a true vacuum bubble is generated in the de Sitter background, then the true vacuum

bubble will expand and dominate all over the background [4]. Here, we need to observe

the causal structure of de Sitter(inside)-de Sitter(outside) combination [6]. However, what

will happen if a false vacuum bubble is generated? If the false vacuum bubble collapses,

we need to observe the de Sitter-Schwarzschild-de Sitter combination [7, 8, 10], where the

Schwarzschild implies a Schwarzschild black hole due to the collapse of the transition region.

On the other hand, if the size of a false vacuum bubble becomes on the order of the horizon

size of the background [5] again we need to observe the de Sitter-de Sitter combination.

The most difficult situation is when the size of a false vacuum bubble becomes less

than the horizon size of the background but greater than the horizon size of the false vac-

uum [11]. In this case, the false vacuum bubble has to inflate in physical coordinates but

the outside observer will only see the Schwarzschild structure. Then, if we assume the null

energy condition, this structure seems to be a kind of de Sitter-Schwarzschild-de Sitter

space, where the Schwarzschild means the Schwarzschild wormhole [7, 8, 10, 11]; of course,

it is a mathematically allowed solution. However, when the null energy condition is vio-

lated [12], its exact causal structure is not well-known, but maybe a dynamical generation

of a wormhole will be accompanied.

Next natural question is the meaning of the inside de Sitter space. It implies the

generation of a bubble universe which is separated from our Universe, while an outside

observer sees a black hole [7]. Is it possible to happen in a laboratory? If we assume

the null energy condition and global hyperbolicity, in a general relativistic sense, it seems

to be impossible since the initial condition needs a kind of singularity from a singularity

theorem [13]. This kind of bubble is known as an unbuildable bubble [10]. In a semi-classical

sense, it seems to be possible via tunneling from a buildable bubble to an unbuildable

bubble, i.e., tunneling from the outside to the inside of a Schwarzschild wormhole [8, 10, 14].

However, if the background is the anti de Sitter space and if one assumes AdS/CFT [16],

false vacuum bubbles are expected to evolve by a unitary way. Therefore, one may guess

that tunneling from a buildable state to an unbuildable state should be excluded in the anti

de Sitter background [10, 15]. Also, it is reasonable to apply this principle to a background

de Sitter space.

– 2 –
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Up to now, these results were based on the thin shell approximation. According to

the thin shell approximation, the transition region needs a kind of energy shell to satisfy

the Einstein equations. However, in a real situation, the transition layer will have a non-

zero thickness and the field values of inside of the shell will have non-trivial dynamics. Of

course, it is very difficult to solve such dynamics by hand, and hence one needs a numerical

approach [17–19]. If we extend our calculations beyond the thin shell approximation, then

we can describe not only the geometry (metric and shell), but also the field dynamics which

was ignored in the thin shell approximation.

In this paper, we prepare a false vacuum bubble inside of an almost flat background.

According to the thin shell approximation, as one tunes the initial parameters, basically two

behaviors are expected: namely the collapse or expansion of a shell [7]. We could reproduce

the collapsing solution easily. However, one interesting issue is whether the expansion of

a false vacuum bubble is possible or not. According to the thin shell approximation with

the null energy condition, this seemed to be impossible unless assuming tunneling from a

buildable state to an unbuildable state [10, 14].

Here, in this paper, we remark two important points:

• First, an expanding bubble solution which contains the inflating region is difficult to

obtain not by the reason of geometry, but by reasons of field dynamics. Field values

of a false vacuum bubble is unstable as the shell expands.

• Second, general relativity does not exclude a generation of an inflating bubble if one

assumes exotic matter fields. We show that a wormhole is dynamically generated to

induce a bubble universe along the shell. It does not necessarily require tunneling

from the outside to the inside of a Schwarzschild wormhole.

Since a generation of an inflating bubble implies the violation of unitarity, the authors

suspect that some holographic arguments on the unitary evolution seem to have potential

dangerous; or some holographic arguments restricts our assumptions on the initial state of

a bubble.

This paper is structured as follows. In section 2, we study previous results of the

thin shell approximation. In section 3, we introduce numerical setup to extend beyond the

thin shell approximation and introduce simulation parameters. In section 4, we observe and

classify solutions of false vacuum bubbles and discuss interesting physical issues. Finally, in

section 5, we comment our contributions from studies beyond the thin shell approximation

and discuss the unitarity issue with the generation of a bubble universe.

2 Basic results of the thin shell approximation

2.1 Thin shell approximation

We assume spherical symmetry and observe the dynamics of a false vacuum bubble inside

of the true vacuum background. Traditionally, some authors studied this problem by using

the thin shell approximation [7–11, 20]. The thin shell approximation is based on the

following two assumptions:

– 3 –
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1. The inside false vacuum region is governed by the de Sitter metric and the outside

true vacuum region is governed by the Schwarzschild metric.

2. Between the two regions, there is a thin mass shell which has a proper surface tension.

The metric ansatz for the inside and the outside regions, respectively, are

ds2
i = −fi(r)dt2i +

1

fi(r)
dr2 + r2dΩ2, (2.1)

and

ds2
o = −fo(r)dt2o +

1

fo(r)
dr2 + r2dΩ2, (2.2)

where fi(r) = 1 − r2/l2 and fo(r) = 1 − 2m/r.

The metric ansatz for transition region is

ds2
shell = −dτ2 + R(τ)2dΩ2, (2.3)

where r = R(τ) holds. We get the equation of motion for the shell

√

Ṙ2 + fi(R) −
√

Ṙ2 + fo(R) = κR, (2.4)

where κ = 4πσ and σ is the surface tension of the transition region. This can be reduced

to the following form:

Ṙ2 + Veff(R) = 0, (2.5)

where

Veff(r) = fo(r) −
(fi(r) − fo(r) − κ2r2)2

4κ2r2
. (2.6)

However, to maintain the information of the sign of each roots, we need to compare the

extrinsic curvature for the outside and the inside of the shell. The extrinsic curvatures are

defined as follows:

βi =
fi(R) − fo(R) + κ2R2

2κR
= ±

√

Ṙ2 + fi(R), (2.7)

and

βo =
fi(R) − fo(R) − κ2R2

2κR
= ±

√

Ṙ2 + fo(R). (2.8)

Now, to satisfy the Einstein equations,

βi − βo = κR (2.9)

should hold. The sign of the extrinsic curvatures in R → 0 or R → ∞ limit intuitively tell

us the asymptotic direction of the (expanding or collapsing) shell [10].

– 4 –
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Figure 1. Solutions of the thin shell approximation (symmetric cases). Since βi is always positive

in R → 0 limit, dSD is disallowed; βo is always positive in R → 0 limit, SchC is disallowed; βo is

always negative in R → ∞ limit, SchE is disallowed.

Figure 2. Solutions of the thin shell approximation (asymmetric cases).

In general, the effective potential Veff is a convex function for a time-like shell [7, 10];

therefore, it allows a collapsing solution or an expanding solution. Then there are basically

5 possibilities: (a) from expanding to collapsing, (b) from collapsing to expanding, (c)

from collapsing to collapsing, (d) from expanding to expanding, and (e) a static solution

in an unstable equilibrium. (a) and (b) are symmetric solutions, whereas (c) and (d) are

asymmetric solutions. For simplicity, we omit the unstable equilibrium case (e).

Firstly, let us classify symmetric solutions. The left diagram of figure 1 is for the de

Sitter space, and the right diagram is for the Schwarzschild space. For a collapsing case,

dSA or dSD are possible; and SchB, SchC, or SchD are possible. Also, for an expanding

case, dSB or dSC are possible; and SchA or SchE are possible. However, according to

the behavior of the extrinsic curvatures in R → 0 or R → ∞ limit, we can remove the

solutions of dSD, SchC, and SchE. Therefore, there are 4 possible solutions: dSA − SchB,

dSA−SchD, dSB−SchA, dSC−SchA. The case dSA−SchB is a collapsing bubble solution,

where the collapsing shell is inside of a Schwarzschild wormhole. The case dSA − SchD

is a collapsing bubble solution, where the collapsing shell induces a Schwarzschild black

hole. The case dSB−SchA is an expanding bubble solution, where the shell expands inside

of a Schwarzschild wormhole, and the shell becomes greater than the horizon size of the

– 5 –
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Figure 3. Farhi-Guth-Guven tunneling.

inside de Sitter space. The case dSC − SchA is an expanding bubble solution, where the

shell expands inside of a Schwarzschild wormhole, and the shell expands outside of the

cosmological horizon for the r = 0 observer.

Secondly, let us classify asymmetric solutions (figure 2). The most interesting case

is the creation of a bubble universe. In this case, we need to consider from expanding

to expanding solution. Here, dSE, dSF, and SchF are allowed; thus giving us the case of

dSE − SchF and dSF − SchF as allowed transition solutions. We can interpret these as

expanding solutions which begin from a singularity [7, 13].

2.2 Buildability of initial states and Farhi-Guth-Guven tunneling

If we want to build a bubble universe in a laboratory, the initial state should begin from

the inside of the horizon of the de Sitter space, and the outside of the horizon of the

Schwarzschild black hole or the Schwarzschild wormhole. And the final state should end

at the outside of the horizon of the de Sitter space and the inside of the Schwarzschild

wormhole. Then the only reasonable solution is the unbound solution dSE − SchF or

dSF − SchF.

However, this is not the final answer to the generation of a bubble universe. According

to Farhi and Guth [13], whenever the null energy condition and global hyperbolicity hold,

if a shell becomes greater than the horizon size of the inside de Sitter space, the horizon

becomes a kind of anti-trapped surface, and the bubble should begin from an initial sin-

gularity. Therefore, if a solution ends with a bubble universe, its initial state should be a

singular state. We call this an unbuildable state and the opposite case is called a buildable

state [10].

To overcome this problem and generate a bubble universe by using a constructible way,

we need to include tunneling [14]. The tunneling is to paste a buildable solution dSA−SchD

and an unbuildable solution dSB − SchA [8]. The former does not hold the conditions of

the singularity theorem, and thus, one may assume that its initial state is buildable. Some

authors have calculated the probability using some approximations of quantum gravity,

and found consistent results [14]. This is known as Farhi-Guth-Guven tunneling (figure 3).

– 6 –
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2.3 Conclusions of the thin shell approximation

The followings are conclusions of the thin shell approximation with the null

energy condition:

1. A shell will either collapse or expand; if it has sufficient energy, it can expand to an

unbounded size.

2. A shell cannot expand except if it is in a Schwarzschild wormhole.

3. When a false vacuum bubble is generated in an almost flat background, if one wants

to make a bubble universe, it should tunnel into the Schwarzschild wormhole.

One interesting question is this: is it possible to prepare any field configurations, thin

or thick shell, so that the bubble is able to expand forever? Let us assume an initial

bubble which is inside of the de Sitter horizon and outside of the Schwarzschild black hole.

Then, the only allowed solution from the thin shell approximation is dSA − SchD, i.e., a

collapsing bubble solution [7], and hence it cannot expand forever according to the thin

shell approximation [8, 10]. Now the next natural step is to move to beyond the thin shell

approximation.

3 Beyond the thin shell approximation

In this paper, by going beyond the thin shell approximation, we observe some field config-

urations where the bubble which is outside of the Schwarzschild radius can expand forever.

Then, what is the difference between the thin shell approximation and beyond the thin

shell approximation?

We specify the following key assumptions for beyond the thin shell approximation:

1. The field of the inside region is in a false vacuum and the field of outside is in a true

vacuum; we do not assume special metric structures and we consider whole dynamics

of metric and fields.

2. The transition region has a non-zero thickness.

One possible interpretation is that, from the first assumption, the field value of the

inside region is not static and not stable; then, the inside is no longer an exact de Sitter

space. The other possibility is that, from the second assumption, the thick transition

region induces a wormhole in a dynamical way. In this paper, we will demonstrate that

(1) if we do not violate the null energy condition, the first possibility happens and (2) if

we do violate the null energy condition, both possibilities happen.

Now we discuss our model and setup.

3.1 Setup

We describe a Lagrangian with a scalar field Φ with a potential V (Φ) [21, 22]:

L = −Φ;aΦ;bg
ab − 2V (Φ). (3.1)

– 7 –
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From this Lagrangian we can derive the equations of motion for the scalar field:

Φ;abg
ab − V

′

(Φ) = 0. (3.2)

Also, the energy-momentum tensor becomes

Tab = Φ;aΦ;b −
1

2
gab(Φ;cΦ;dg

cd + 2V (Φ)). (3.3)

Now, we will describe our numerical setup. We start from the double-null coordinates

(our convention is [u, v, θ, ϕ]),

ds2 = −α2(u, v)dudv + r2(u, v)dΩ2, (3.4)

assuming spherical symmetry. Here, u is the in-going null direction and v is the out-going

null direction.

We define main functions as follows (we follow the numerical approach of previous

authors [17–19, 23].): the metric function α, the area function r, and the massless scalar

field S ≡
√

4πΦ. Also, we use some conventions: d ≡ α,v/α, h ≡ α,u/α, f ≡ r,u, g ≡ r,v,

W ≡ S,u, Z ≡ S,v.

From this setup, the following components can be calculated:

Guu = −2

r
(f,u − 2fh),

Guv =
1

2r2

(

4rf,v + α2 + 4fg
)

,

Gvv = −2

r
(g,v − 2gd),

Gθθ = −4
r2

α2

(

d,u +
f,v

r

)

,

Tuu =
1

4π
W 2,

Tuv =
α2

2
V (S),

Tvv =
1

4π
Z2,

Tθθ =
r2

2πα2
WZ − r2V (S), (3.5)

where

V (S) = V (Φ)|Φ=S/
√

4π. (3.6)

From the equation of the scalar field, we get the following equation:

rZ,u + fZ + gW + πα2rV
′

(S) = 0. (3.7)

Note that, V
′

(S) = dV (S)/dS.

Finally, we use the Einstein equation,

Gµν = 8πTµν . (3.8)

Including this, we can list all equations for our numerical simulations.

– 8 –
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1. Einstein equations:

d,u = h,v =
fg

r2
+

α2

4r2
− WZ,

g,v = 2dg − rZ2,

g,u = f,v = −fg

r
− α2

4r
+ 2πα2rV (S),

f,u = 2fh − rW 2. (3.9)

2. Scalar field equations:

Z,u = W,v = −fZ

r
− gW

r
− πα2V

′

(S). (3.10)

3.2 The initial value problem and integration schemes

We prepare a false vacuum bubble along the initial ingoing surface, where the outside is

flat background. One can interpret that a combination of fields is generated in the almost

flat background via quantum tunneling. We need initial conditions for each function on

initial u = ui = 0 and v = vi = 0 surfaces. There are two kinds of information: geometry

(α, r, g, f, h, d) and matter (S,W,Z).

On the geometry side, we have gauge freedom to choose the initial r function; although

all constant u and v lines are null, there remains freedom to choose the distances between

null lines. We choose r(u, vi) = uru0 + r0 and r(ui, v) = vrv0 + r0. Here, we fix r0 = 10.

Then, g(ui, v) = rv0 and f(u, vi) = ru0 are naturally obtained. We assume that the

asymptotic outside is flat: α(ui, vi) = 1. Since the mass function(M(u, v) = (r/2)(1 +

4r,ur,v/α
2)) [24] should vanish at the initial surface (ui, v), we can choose ru0 = −1/2,

rv0 = 1/2.

On the matter side, we fix S(ui, v) = 0 and S(u, vi) will be defined in the next sub-

section. Then, one can calculate S(u, vi), W (u, vi), S(ui, v), and Z(ui, v) for initial states.

Then, as one fixes S(u, vi), from the Einstein equations, one can obtain α(u, vi) from

2fh = rW 2 (since r,uu = 0 at the initial surface). And then, the other functions can be

evolved using equations on α,uv, r,uu or r,vv, and S,uv.

We can choose two integration schemes. First, we can get α from d, r from the

equation for r,vv , and S from Z. Second, we can get α from h, r from the equation for r,uu,

and S from W . We call the former v-scheme, whereas the latter u-scheme. We mainly

used the v-scheme. However, these results should be same. We compared them to check

the consistency of simulations in appendix A. Here, we used the 2nd order Runge-Kutta

method [25].

3.3 Free parameters

Now we specify initial parameters.

First, we specify the potential function. We want a potential that has two stable

minima, where the true vacuum of a field value Φ = 0 has 0 vacuum energy and the false

vacuum of a field value Φ = Φ0 has vacuum energy Λ.

– 9 –
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Figure 4. Vpoly(S) with (A = 105, S0 = 0.1, Λ = 0.001).

Figure 5. A collapsing shell solution (Type 1).

Second, we specify the initial field configuration Φ(u, vi). For simplicity, we assume

that the inner part has a field value Φ0 and the outer part has a field value 0, i.e., the true

vacuum. However, to go beyond the thin shell approximation, we need a transition region

from the true vacuum to the false vacuum. So, we define the function Φ(u, vi) as follows:

Φ(u, vi) =











0 u < ushell,

Φ0G(u) ushell ≤ u < ushell + ∆u,

Φ0 ushell + ∆u ≤ u,

(3.11)

where G(u) is a pasting function which goes from 0 to 1 by a smooth way. We choose

G(u) by

G(u) = sin2

[

π(u − ushell)

2∆u

]

, (3.12)

– 10 –
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Figure 6. Simulations of r and S for (∆u = 0.1, S0 = 0.1, Λ = 0.001) with potential Vpoly(S).

Black curves of upper diagram are contours of r. The lower diagram is for S. Here, the yellow

region is in the false vacuum, and the blue region is in the true vacuum. This shows the collapsing

shell solution.

and we choose ushell = 5 for all simulations in this paper.1

Now, we can specify all free parameters of our simulation.

1. A potential V (Φ)

2. Thickness of the transition region ∆u

1Here, the initial energy of the shell is proportional to (Φ0/∆u)2 since the energy of shell depends on the

gradient of the field, as we can see in the Tuu component. Note that if the radial function of the transition

region increases, we interpret that the shell expands; if the radial function decreases, we interpret that the

shell collapses. Since r,u < 0 and r,v > 0 at the outside of the shell, if the transition region approaches the

out-going null direction, the shell expands; if the transition region approaches the in-going null direction,

the shell collapses.

– 11 –
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Figure 7. Variation of the thickness of the shell ∆u. As ∆u decreases, the shell expands, and field

values of the inside false vacuum become unstable.

3. A field value of the false vacuum Φ0

4. Vacuum energy of inside Λ

From now, for convenience, we use S =
√

4πΦ rather than Φ for numerical simulations;

but, of course, we can change both conventions easily. Therefore, if one fixes a potential

V (S), then three parameters (∆u, S0 =
√

4πΦ0,Λ) fully defines a simulation.

4 Causal structures and physical issues

In this section, we will classify 4 types of solutions. First, as we discussed in the thin shell

approximation in section 2, we observe a collapsing shell solution. We call this Type 1.

Second, by giving sufficient energy to a shell, we will get an expanding shell solution. We

call this Type 2. However, our simulations do not contradict with the expectations of the

thin shell approximation, since field values of the inside false vacuum become unstable.

To induce inflation, we will prepare N matter shells and N exotic matter shells. In this

setup, an inflating shell and creation of a bubble universe are possible. We call this Type 3.

Finally, by tuning the initial parameters, we observe a transition from Type 2 to Type 3;

between these two types, we could find another solution which we call Type 4.

– 12 –
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4.1 Type 1: a collapsing shell

4.1.1 Collapsing shell solutions

We begin with the following potential Vpoly(Φ) of polynomial form:

Vpoly(Φ) = AΦ2

[

Φ2 − 2

(

Λ

AΦ3
0

+ Φ0

)

Φ − 2Φ2
0 + 3

(

Λ

AΦ2
0

+ Φ2
0

)]

. (4.1)

This potential has a stable minimum around Φ0 with vacuum energy Λ. The three

parameters A,Φ0, and Λ define one specific potential. For example, if one chooses

A = 105, S0 = 0.1, and Λ = 0.001, then the following potential Vpoly(S) is obtained

(figure 4). As we change S0 and Λ, by tuning A, we could tune the ratio between the

height of the unstable equilibrium and the height of the false vacuum to be ∼ 4.5.

First, we calculate (∆u = 0.1, S0 = 0.1,Λ = 0.001). Figure 6 shows the results.

The upper diagram of figure 6 is for the function r. Gradients of each contour lines

are changed around u = 5, since there is the transition region from the true vacuum to the

false vacuum. Though the gradients are changed from lower to upper region, each contour

line in the upper region is almost straight and parallel. This implies that the upper region

of u = 5 does not inflate.2

The lower diagram of figure 6 is for the function S. The yellow region is the false

vacuum, and the black region is the true vacuum. One may notice that there are small

fluctuations in the yellow region and the black region. However, even though there are

fluctuations, the field value of the inside false vacuum region is almost constant. Thus, the

false vacuum is quite stable.

One can notice that the false vacuum bubble collapses along a time-like direction.

Then, eventually it will form a black hole, though we cannot see the black hole in our

simulation. This result is demonstrated in figure 5. We call this solution Type 1. This

result is consistent with dSA − SchD solution of the thin shell approximation.

4.1.2 Transition from stable to unstable field values

As we tune the three parameters (∆u, S0 =
√

4πΦ0,Λ), we can observe the change of the

collapsing shell solution. Note that all r diagrams or causal structures are similar, and

hence we omit r functions and present only diagrams of the field S.

First, we have varied the thickness of the shell ∆u (results shown in figure 7 and

figure 6):

• (∆u = 0.5, S0 = 0.1,Λ = 0.001),

• (∆u = 0.1, S0 = 0.1,Λ = 0.001),

• (∆u = 0.05, S0 = 0.1,Λ = 0.001),

2Here, we could not simulate beyond r = 0, since it gives a mathematical singularity of our equations;

and hence, from r = 0 point, there is a cutoff line where its beyond is impossible to calculate. This problem

comes from the 4-dimensional spherical symmetry. However, this should be resolved as we restore full

4-dimensional gravity and hence it may not be a fundamental limitation.
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Figure 8. Variation of the field value of the inside false vacuum S0. As S0 increases, the shell

expands, and field values of the inside false vacuum become unstable.

• (∆u = 0.025, S0 = 0.1,Λ = 0.001),

• (∆u = 0.01, S0 = 0.1,Λ = 0.001).

Note that the energy of a shell is approximately proportional to S2
0/∆u2 since the energy-

momentum tensor contributes order W 2. Therefore, small ∆u and large S0 implies more

energetic shells. As the thickness of the shell becomes smaller and smaller, the shell tends to

collapse more slowly. In (∆u = 0.05, S0 = 0.1,Λ = 0.001), fluctuations outside of the shell

(i.e., near the true vacuum) becomes larger than fluctuations of (∆u = 0.1, S0 = 0.1,Λ =

0.001). In (∆u = 0.025, S0 = 0.1,Λ = 0.001) and (∆u = 0.01, S0 = 0.1,Λ = 0.001), the

shell seems to be expanded and slowly rolls down to the true vacuum. Note that the inside

region (high u) rolls down faster than the region near the shell (especially visible for the

case ∆u = 0.025).

Second, we have varied the field value S0 of the inside false vacuum region (figure 8):

• (∆u = 0.1, S0 = 0.08,Λ = 0.001),

• (∆u = 0.1, S0 = 0.1,Λ = 0.001),

• (∆u = 0.1, S0 = 0.15,Λ = 0.001),

• (∆u = 0.1, S0 = 0.3,Λ = 0.001).
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Figure 9. Variation of the vacuum energy of the inside false vacuum Λ. As Λ decreases, the shell

expands, and field values of the inside false vacuum become unstable.

As the field value becomes larger and larger, the shell slowly collapses. In (∆u = 0.1, S0 =

0.15,Λ = 0.001), the shell expands, but since the inside field values are unstable, the

field quickly rolls down to the true vacuum and oscillate around S = 0. The case (∆u =

0.1, S0 = 0.3,Λ = 0.001) is again an expanding solution with slow-rolling field values.

Third, we have varied the vacuum energy Λ of the inside false vacuum region (figure 9

and figure 6):

• (∆u = 0.1, S0 = 0.1,Λ = 0.05),

• (∆u = 0.1, S0 = 0.1,Λ = 0.01),

• (∆u = 0.1, S0 = 0.1,Λ = 0.001),

• (∆u = 0.1, S0 = 0.1,Λ = 0.0001),

• (∆u = 0.1, S0 = 0.1,Λ = 0.00001).

When there is large vacuum energy, the shell tends to collapse quickly. As one has small

Λ, the shell tends to expand (∆u = 0.1, S0 = 0.1,Λ = 0.0001) and the inside field value

eventually becomes unstable (∆u = 0.1, S0 = 0.1,Λ = 0.00001). According to the thin

shell approximation, as the vacuum energy decreases, the critical energy which determines

collapse or expansion becomes decreases [7]. Therefore, as Λ decreases, the expanding

solution is easily obtained and hence our observation is consistent in terms of the thin shell

approximation.
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Figure 10. Transition from Type 1 to Type 2, as the energy of the shell decreases.

Therefore, one can conclude that as the energy of a shell increases, the shell tends to

expand. This result is consistent with the arguments of the thin shell approximation. We

observed basic tendencies as follows. First, if the shell has sufficiently low energy than a

critical value, i.e., large ∆u, small S0, and large Λ in a certain limit, then the shell tends

to collapse. In other cases, the shell will tend to expand. Second, if the shell collapses,

the inside false vacuum region is stable; while if the shell expands, the inside false vacuum

region is unstable and the field values slowly roll down to the true vacuum. In the latter

case, the rolling begins from the inside to the outside. We include a transition diagram

between two extreme cases (figure 10).

4.2 Type 2: an expanding shell with unstable field values

4.2.1 Expanding shells with unstable field values

From the discussions of the previous section, we observed that as the energy of the shell

increases, the shell tends to expand. In this section, we observe details of the expanding

unstable field value solution. We will call this Type 2.

We simulate the following parameters: (∆u = 0.1, S0 = 0.3,Λ = 0.001) (figure 11).
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Figure 11. Simulations of r and S for (∆u = 0.1, S0 = 0.3, Λ = 0.001) with potential Vpoly(S).

The upper diagram is a contour diagram of the function r. The causal structure is

similar as type 1. The lower diagram is of the function S. The field value slowly rolls down

to the true vacuum. The inside region (high u) rolls down faster than the outside region.

This result is schematically shown in figure 12.

4.2.2 Dependence on potentials

One question is whether the unstable behavior of inside field values depends on the potential

structure or not. For this purpose, we introduce the following form of potential (figure 13):

Vwall(S) =























0 S ≤ 0,
Λ
2

[

1 − cos
(

Sπ
w1

)]

0 < S ≤ w1,

Λ +
Λbump

2

[

1 − cos
(

(S−w1)π
w2

)]

w1 < S ≤ w1 + 2w2,

Λ w1 + 2w2 < S.

(4.2)
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Figure 12. An expanding shell with unstable field values (Type 2).

0.05 0.1 0.15 0.2

0.002

0.004

0.006

0.008

0.01

Figure 13. Vwall(S) with (w1 = 0.05, w2 = 0.025, Λbump = 0, 0.0035, 0.01).

Here, we have used w1 = 0.05 and w2 = 0.025. Therefore, as we increase Λbump, the

barrier of potential becomes higher and higher. If the field dynamics is not changed via

these different heights of barriers, it will imply that the dynamics of an unstable field values

do not sensitively depend on the specific potential structure.

We calculated the following cases (figure 14):

• Λbump = 0,

• Λbump = 0.0035,

• Λbump = 0.01,
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Figure 14. Variation of potentials.

where the other conditions are fixed by (∆u = 0.1, S0 = 0.3,Λ = 0.001). We observed

that their field dynamics are almost the same. Therefore, the unstable behavior seems to

depend on just the properties of the shell and does not sensitively depend on potential

structures.

4.2.3 Stability analysis

One interesting question for an expanding bubble is whether there is inflation or not. In

Type 2, there is no inflation. Then, what is the reason of this?

In this paper, we will focus on the case when the field value moves slowly. Note that it

does not mean the same as conventional slow-roll inflation, it just means that the change

of the field amplitude via dynamics of the field is sufficiently small.3 To induce inflation,

we need to maintain the field values of the inside false vacuum, and as we observed, it does

not sensitively depend on the form of the potential. Therefore, for this analysis, we use a

simplified potential as shown in figure 15. Here, Φ,u|shell
∼= S0/∆u and V

′

shell
∼= Λ/S0.

We want to see whether the near of the shell induces inflation or not. We will discuss

brief outline of this section. First, to induce the stable field values, the back-reaction of

3Via the instability of fast-rolling fields (see appendix A.1), calculations of fast-rolling fields require

too large computing power, and the authors could not obtain any evidence whether there exist fast-rolling

inflation in our setup.
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Figure 15. A simplified potential and initial conditions.

the field should be sufficiently small, i.e.,

|Φ,uv∆u∆v|
|Φ0|

≪ 1 (4.3)

should hold, where ∆u is the thickness of the shell and ∆v is the required time to observe

inflation. Second, to observe the effect of the vacuum energy, we require α ∼ 1; if it does

not hold, then all contributions of the vacuum energy will be suppressed by small α. These

two constraints will give sufficient forms of the initial conditions ∆u,Φ0, and Λ. Finally,

we will see that, even though we require the conditions, it is difficult to obtain inflation,

since we have to require sufficiently long ∆v.

Let us observe details. If one integrate the scalar field equation along du, it contributes

only ∆u. Then the initial velocity of field Φ,v becomes, approximately,

Φ,v ∼ −r,v

r
S0 − πα2 Λ

S0
∆u (4.4)

around the shell. Therefore, if the field value of the false vacuum or the vacuum energy

of the inside false vacuum is too large, the inside field values are unstable. To make the

field values stable, we need small S0 and small ∆u limit with Λ∆u ≪ S0 ≪ 1; we need to

choose a proper relation between S0,∆u, and Λ.

Since r,uu = 0 and r,u = −1/2 along the initial constant v line,

− (ln α),u − r

(

S0

∆u

)2
∼= 0 (4.5)

holds. Then approximately,

α ∼ exp

(

−r
S2

0

∆u

)

. (4.6)
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Therefore, one may need the condition

rshell
S2

0

∆u
. 1. (4.7)

If it does not hold, then all terms which depend on potential V are decoupled from all

equations. If the field amplitude S0 is sufficiently small, one can assume the condition.

Now let us assume α ∼ 1. Note that, this condition implies that the curvature around

the shell is sufficiently regular; if α ≪ 1, then the curvature R ∼ 1/α2 cannot be regular

around the shell.

If one compares two values

| r,v

r S0∆v|
|S0|

∼ |∆v|
|rshell|

, (4.8)

this ratio will be sufficiently small as one assumes ∆v/rshell ≪ 1 and r,v ∼ 1. Here, ∆v is

the required time for an observation of inflation. Also, we need to compare two values

|α2 Λ
S0

∆u∆v|
|Φ| ∼ |Λ∆u∆v|

|S2
0 |

∼ |Λrshell∆v|. (4.9)

Here, Λ ∼ 1/r2
shell is a natural guess, and ∆v/rshell ≪ 1 is needed. Then, |Φ,uv∆u∆v|/|Φ|

becomes sufficiently small and we can justify a stable field values.

Therefore, we can suggest some necessary conditions for a stable vacuum:

1. α ∼ 1, or rshellS
2
0/∆u . 1, i.e., the curvature around the shell is sufficiently regular,

2. r,v ∼ 1,

3. Λ ∼ 1/r2
shell,

4. ∆v/rshell ≪ 1.

Then it is natural to assume the following initial conditions:

∆u ∼ ǫ2, S0 ∼ ǫ√
rshell

, Λ ∼ 1/r2
shell (4.10)

with large rshell and small ǫ limit.

However, this situation is difficult to implement in real situations. If we write the

equation for r,uv and use the necessary conditions, one can obtain the following equation

near the inside of the shell:

r,uv = f,v = −r,ur,v

r
− α2

4r
+ 2πα2rV

∼ −f

r
− 1

4r
+ 2πrΛ. (4.11)

If there is inflation, then initial f = −0.5 will increase to 0. As one integrate both sides

along v, the first and the second term are almost same order before the beginning of

inflation. Therefore, more important contribution of f comes from the third term. And,
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near the very thin shell, it is reasonable to choose r ∼ Cv + rshell, where C is a constant.

Then approximately,

f(v) − f(vi) ∼ C

(

v

rshell

)2

+

(

v

rshell

)

. (4.12)

In this limit, ∆v for f(∆v) = 0 is on the order of rshell. Therefore, ∆v/rshell may not

be sufficiently small. This is a basic intuitive reason why in our setup it is difficult to

induce inflation.

4.3 Type 3: an inflating shell

4.3.1 Physics of exotic matters

Before we discuss a new type of solutions, we comment on the physics of exotic matters. If a

matter violates the null energy condition, it is called a phantom matter or an exotic matter.

This kind of matter were discussed in many contexts including general relativity [26] and

cosmology [27].

We prepare the following Lagrangian for an exotic matter field Ψ:

L′ = +Ψ;aΨ;bg
ab + 2V (Ψ). (4.13)

From this Lagrangian, we can derive the equation of motion for the scalar field:

Ψ;abg
ab − V

′

(Ψ) = 0. (4.14)

Also, the energy-momentum tensor becomes

Tab = −Ψ;aΨ;b +
1

2
gab(Ψ;cΨ;dg

cd + 2V (Ψ)). (4.15)

Note that the potential V (Ψ) contributes to the negative vacuum energy. Since our aim is

to induce inflation, for convenience, we choose the potential by V (Ψ) = 0.

According to previous researches, if there exist exotic matter, a static wormhole, a

warp drive or a time machine may be possible [26]. However, these analysis were based on

a pre-existing metric ansatz which may not be justified from an almost flat background. In

our setup, we do not assume a strange geometry from the initial condition; we begin with

an almost flat background and assume a combination of fields.

By assuming the violation of the null energy condition, an expanding and inflating

bubble solution may be justified without Farhi-Guth-Guven tunneling [12]. However, still

the dynamical causal structure of these inflating solutions are not known. In the following

sections, we will discuss the correct causal structure of the expanding and inflating bubble

solution. Here, a wormhole is dynamically generated along the shell.

4.3.2 The N-shell bubble

To induce inflation, one may need to hold the field values for sufficiently long time, i.e., we

should control the rolling of the inside field values. We need some conditions: (1) the force

– 22 –



J
H
E
P
1
1
(
2
0
0
9
)
0
1
6

term V ′(S) should be suppressed; (2) the vacuum energy of the inside of the shell should

be maintained; (3) the curvature around the shell should be sufficiently regular.

We introduce a brief outline of this section. One observation is that if the amplitude

of a field is sufficiently small, then we can expect that the contribution on V ′(S) can be

sufficiently small. However, the corresponding vacuum energy also becomes small. To

solve this problem, we introduce a number N of shells. Then we can dilute the force term

maintaining the vacuum energy as a constant value. However, in that case, the curvature

around the shells cannot be small, since the contribution on the energy-momentum tensor

becomes order
√

N . To regularize the curvature around the shells, we will introduce a

number of exotic matter shells. Then we can induce sufficient setup to induce inflation.

We discuss the details as the following. Let us assume N scalar fields φi with potential

Vphi4(φi) = λ

(

N
∑

i=1

φ4
i

)

, (4.16)

where φi are scalar fields and λ is a constant. If all fields are coherent and have the same

amplitude, then Vphi4(φi) = Nλφ4
i holds. Here, the field equations are

(φi);abg
ab − 4λφ3

i = 0, (4.17)

where φi ∼ 1/N1/4 with N fields. Also, assume N exotic matter fields ζj. Then, the

equations of motion are

(ζj);abg
ab = 0. (4.18)

Again, we assume ζj ∼ 1/N1/4, and assume that all ζj are coherent with the

same amplitude.

Let us assume initial conditions for φi and ζj by

φi(u, vi) =











0 u < ushell,

(φ0/N
1/4)G(u) ushell ≤ u < ushell + ∆u,

φ0/N
1/4 ushell + ∆u ≤ u,

(4.19)

ζj(u, vi) =











0 u < ushell,

(βφ0/N
1/4)G(u) ushell ≤ u < ushell + ∆u,

βφ0/N
1/4 ushell + ∆u ≤ u.

(4.20)

Here, we define 1 − β2 = 1/
√

N .

Then approximately,

|4λφ3
i |

|(φi);abgab| ∼
1

N1/2
→ 0 (4.21)

with large N . Thus, the force term can be sufficiently suppressed in this setup.
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Contributions to Einstein equations should be carefully checked.

(ln α),uv =
r,ur,v

r2
+

α2

4r2
− 4πN(φi),u(φi),v + 4πN(ζj),u(ζj),v

=
r,ur,v

r2
+

α2

4r2
− 4π

√
NΦ,uΦ,v + 4π

√
NΦ′

,uΦ′
,v,

r,vv = 2r,v
α,v

α
− 4πr(N(φi)

2
,v − N(ζj)

2
,v) = 2r,v

α,v

α
− 4πr

√
NΦ2

,v + 4πr
√

NΦ′2
,v,

r,uu = 2r,u
α,u

α
− 4πr(N(φi)

2
,u − N(ζj)

2
,u) = 2r,u

α,u

α
− 4πr

√
NΦ2

,u + 4πr
√

NΦ′2
,u,

r,uv = −r,ur,v

r
− α2

4r
+ 2πα2rNλφ4

i = −r,ur,v

r
− α2

4r
+ 2πα2rλΦ4,

Φ,uv = −r,uΦ,v

r
− r,vΦ,u

r
− 1√

N

√
π

2
α2(4λΦ3),

Φ′
,uv = −

r,uΦ′
,v

r
−

r,vΦ
′
,u

r
, (4.22)

where we define effective fields Φ(u, v) ≡ N1/4φi(u, v) and Φ′(u, v) ≡ N1/4ζj(u, v). We

assume the following initial conditions:

Φ(u, vi) =











0 u < ushell,

φ0G(u) ushell ≤ u < ushell + ∆u,

φ0 ushell + ∆u ≤ u,

(4.23)

Φ′(u, vi) =











0 u < ushell,

βφ0G(u) ushell ≤ u < ushell + ∆u,

βφ0 ushell + ∆u ≤ u.

(4.24)

Now they are equivalent to the following scheme:

d,u = h,v =
fg

r2
+

α2

4r2
−
√

NWZ +

(

1 − 1√
N

)√
NW ′Z ′,

g,v = 2dg − r
√

NZ2 + r

(

1 − 1√
N

)√
NZ ′2,

g,u = f,v = −fg

r
− α2

4r
+ 2πα2r

Λ

S4
0

S4,

f,u = 2fh − r
√

NW 2 + r

(

1 − 1√
N

)√
NW ′2,

Z,u = W,v = −fZ

r
− gW

r
− 4πα2 1√

N

Λ

S4
0

S3,

Z ′
,u = W ′

,v = −fZ ′

r
− gW ′

r
. (4.25)

S, S′(u, vi) =











0 u < ushell,

S0G(u) ushell ≤ u < ushell + ∆u,

S0 ushell + ∆u ≤ u,

(4.26)

since the equation for Φ′ is linear and hence one can re-scale about factor β. Here, S0 =√
4πΦ0 is the field amplitude and λ = (4π)2Λ/S4

0 is the vacuum energy of the inside of the

shell.
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0.05, N = 108) with Vphi4(S) potential. White curves are r,u = 0 horizons. Blue region in the lower

diagram is space-like future infinity. This shows an inflating shell solution.

Let us observe a naive expectation of this formulation. The field equation for Φ is

effectively free via 1/
√

N term. Therefore, effectively, Φ ∼ Φfree + O(1/
√

N) is obtained.

Contributions to the energy-momentum tensor is on the order of

√
N

(

Φfree + O
(

1√
N

))2

∼
√

NΦ2
free +

√
NO

(

1√
N

)

+ . . . , (4.27)

i.e., the leading term contributes to the energy-momentum tensor by order
√

N , where

the second term contributes order 1 which comes from the V ′(S) effect. However, the

first contribution will be canceled by N exotic matter shells, and hence their contributions

become order 1. Therefore, even if we assume N → ∞ limit, we cannot naively assume Φ

as a free field, since the second correction term is comparable to the free field contributions.

If Φ is a free field, as long as the initial surface maintains the null energy condition, the

null energy condition will hold in all regions. However, in our cases, even if we prepare
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Figure 17. An inflating shell solution (Type 3). After push a terminal matter, the evolution of the

shell is ended via a black hole. (a), (b), and (c) are schematic diagrams of area for each space-like

section.

the initial energy-momentum tensor to hold the null energy condition, the effect of V ′(S)

is not negligible; as time goes on, V ′(S) term may affect to roll down the field, and hence

eventually the null energy condition will be violated during inflation.

4.3.3 Simulations of N-shell bubbles

Here we observe simulations with the following conditions: (∆u = 0.3, S0 = 0.1,Λ =

0.01, N = 108) and (∆u = 0.3, S0 = 0.1,Λ = 0.05, N = 108) with Vphi4(S) potential

(figure 16). In the lower diagram, the blue region (upper right corner) is beyond the

calculation ability, since the radial function r becomes exponentially large. We can interpret

this as a space-like future infinity. Therefore, this is an important evidence that we induce

inflation. We will call this class of solutions Type 3.

One can observe the r,u = 0 horizon: an ingoing observer sees increase of area. The

inner horizon has two parts: one is almost parallel to the ingoing null direction, and the

other is almost parallel to the outgoing null direction. The former corresponds to the cos-

mological horizon of the de Sitter space. The latter corresponds a region where area begins

to increase for an ingoing observer: it is similar with the throat of a wormhole. There-

fore, we can say that, during inflation, a wormhole is dynamically generated (schematically

shown in figure 17). One can observe that the former part is always time-like, while the

latter part begins a space-like direction and finally becomes a time-like direction (in fact,

the latter is almost null).

Note that, in figure 17, we pushed a terminal matter to induce a black hole. We do

not need that stage, but to make an end of the structure and discuss the information loss

problem in the final section, we artificially inserted the process.

We observed that the wormhole throat can be generated around the mass shell. Hence,
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Figure 18. Function S, S′, Tuu, and Tvv of (∆u = 0.3, S0 = 0.1, Λ = 0.01, N = 108) with Vphi4(S)

potential. Yellow regions of Tuu and Tvv have field values more than 10−4 and 10−5; skyblue regions

of Tuu and Tvv are less than −10−4 and −10−5; the sign of the energy-momentum tensor is changed

around black region.

Figure 19. Tuu and Tvv around the shell.

we do not need to assume tunneling from the outside to inside of a Schwarzschild wormhole.

In fact, if the null energy condition is violated, this behavior may happen. However,

its causal structure was not known, since the structure is related to the thick transition

layer. We observed a dynamical generation of a wormhole around the transition layer, and

observed the causal structure.

Also, we observed the field S and S′, as well as the energy-momentum tensor Tuu and

Tvv (figure 18). Diagrams of S and S′ are almost similar, but S rolls down more quickly

than S′. One can see black bands from Tuu and Tvv . Note that, if Tuu or Tvv is less than 0,

it implies the violation of the null energy condition. The violation of null energy condition
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Figure 20. r contours for each initial condition.

seems to begin around the inside of the shell (figure 19). And the exotic matter becomes

dominant as time goes on. Therefore, we highly suspect that our inflating shell solution

requires a violation of the null energy condition.

4.4 Type 4: a bursting shell

4.4.1 Transition from Type 3 to Type 2: a bursting shell solution

As we vary the simulation parameters, we could find another kind of solutions between

Type 3 and Type 2.

First, we have changed vacuum energy of the inside Λ:

• (∆u = 0.3, S0 = 0.1,Λ = 0.05, N = 108),

• (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 108),

• (∆u = 0.3, S0 = 0.1,Λ = 0.005, N = 108),

• (∆u = 0.3, S0 = 0.1,Λ = 0.001, N = 108).

Second, we have changed the number of shells N :

• (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 108),

• (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 106),

• (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 104).
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Figure 21. A bursting shell solution (Type 4). After push a terminal matter, the evolution of the

shell is ended via a black hole, and a Cauchy horizon is generated. (a), (b), and (c) are schematic

diagrams of area for each section.

Figure 20 shows the transition from Type 3 (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 108)

to Type 2 (∆u = 0.3, S0 = 0.1,Λ = 0.001, N = 108). Between these two limits, we could

find interesting structures: we will call these Type 4 (figure 21).

The cases (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 106) and (∆u = 0.3, S0 = 0.1,Λ =

0.01, N = 104) show the behavior when N decreases. Inflation is suppressed, but the loca-

tion where inflation begins is invariant. However, in (∆u = 0.3, S0 = 0.1,Λ = 0.005, N =

108), we observe small Λ limit, and the beginning of inflation is shifted.

If one compares stability of field S (figure 22), as N decreases, inside field values become

unstable and roll down to the true vacuum and roll around S = 0: (∆u = 0.3, S0 = 0.1,Λ =

0.01, N = 104).

Figure 23 shows Tuu components. Yellow regions are greater than 10−4 and skyblue

regions are less than −10−4. In the case of Type 3 solutions (e.g., (∆u = 0.3, S0 = 0.1,Λ =

0.05, N = 108) or (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 108)), violating region of the

null energy condition is quite wide. However, in Type 4 solutions (e.g., (∆u = 0.3, S0 =

0.1,Λ = 0.01, N = 106), (∆u = 0.3, S0 = 0.1,Λ = 0.01, N = 104), or (∆u = 0.3, S0 =

0.1,Λ = 0.005, N = 108)), Tuu is almost globally positive except near the shell. Therefore,

the violation of the null energy condition seems to be essential, but to see r,u = 0 horizons,

the violation is needed just a narrow region around the shell (figure 24).

Figure 25 shows Tvv components. The beginning of inflation seems not to be related

to the sign of Tvv and may not be important for inflation.
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Figure 22. Field S for some conditions. As N decreases, the inside field more quickly rolls down.

Finally, we remark on the behavior of r,u = 0 horizons. For the Type 3 case, the inner

r,u = 0 horizon (the analogous horizon of the de Sitter space) is always time-like but for

the Type 4 case, the inner r,u = 0 horizon bends from a time-like direction to a space-like

direction. Also, the outer r,u = 0 horizon (the throat of a wormhole) bends from a space-

like direction to a time-like direction (figure 24). These changes come from the properties

of r,uv = f,v around the horizon. Since r,u = 0, it becomes

r,uv|r,u=0 = −α2

4r
+ 2πα2rV (S). (4.28)

If r,uv > 0, then the outer r,u = 0 horizon is space-like and the inner r,u = 0 horizon is

time-like; if r,uv < 0, then the outer r,u = 0 horizon is time-like and the inner r,u = 0

horizon is space-like. The sign of r,uv is positive or negative if and only if

8πr2V (S) − 1 (4.29)

is positive or negative. Therefore, if field values are sufficiently large and the vacuum energy

is sufficiently large, the outer r,u = 0 horizon is space-like and the inner r,u = 0 horizon

is time-like. However, as time goes on, the field values slowly roll down and then if the

vacuum energy becomes sufficiently smaller than a critical value, the outer r,u = 0 horizon

becomes time-like and the inner r,u = 0 horizon becomes space-like. In other words, if

the field values quickly roll down to the true vacuum, the horizons tend to disappear and

inflation ends. This is the basic physical difference between Type 3 and Type 4.

These changes are schematically shown in figure 26.
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Figure 23. Tuu plots for some conditions. Yellow regions are greater than 10−4, and skyblue

regions are less than −10−4.

Figure 24. Tuu around the shell for (∆u = 0.3, S0 = 0.1, Λ = 0.005, N = 108).

5 Discussion

We considered a false vacuum bubble inside of an almost flat background. Here, we as-

sumed that the size of the bubble was smaller than the background horizon size, and

of similar order as its own horizon size. A traditional approach on this problem is the

thin shell approximation. In this paper, we extended our methods to beyond the thin

shell approximation.

To summarize our discussion, firstly we will focus on the meaning of beyond the thin

shell approximation. Secondly we will discuss about some speculations of a bubble universe

and unitarity issues.
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Figure 25. Tvv plots for some conditions. Yellow regions are greater than the upper bound, and

skyblue regions are less than the lower bound.

5.1 Beyond the thin shell approximation

We discussed previous results of the thin shell approximation. The thin shell approximation

assumes the inside false vacuum region as the de Sitter space and the outside true vacuum

region as the Schwarzschild space. According to the thin shell approximation and the null

energy condition, if a shell is outside of a Schwarzschild black hole it cannot evolve to a

bubble universe unless one introduces the Farhi-Guth-Guven tunneling; the only allowed

solution is dSA − SchD.

We extend the analysis beyond the thin shell approximation by using numerical meth-

ods. Two essential points of beyond thin shell approach are the added field dynamics and

the thick transition layer. If a shell has sufficiently low energy, as expected from the thin

shell approximation, it will collapse (Type 1). However, if the shell has sufficiently large

energy, it tends to expand. However, via the field dynamics, the inside vacuum slowly rolls

down to the true vacuum (Type 2). Moreover, if we add sufficient exotic matters to reg-

ularize curvatures around the shell, inflation may be possible without Farhi-Guth-Guven

tunneling and a wormhole can be dynamically generated (Type 3). By tuning parameters,

we could find transitions between Type 1 and Type 2, as well as between Type 2 and

Type 3. Between Type 2 and Type 3, we also find another class of solutions (Type 4).

We can conclude our new contributions on this issue. First, finding of Type 2 is a

new result, thanks to going beyond the thin shell approximation. Second we discussed the

physical reason why inflation is difficult to induce without the violation of the null energy
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Figure 26. Transition from Type 3 to Type 2.

condition. Third, the exact causal structure of Type 3 is also a new feature. Some authors

know that the violation of the null energy condition may allow an expanding inflating

bubble, but the causal structure was not known exactly since the structure is related to

the thick transition layer. We observed the causal structure of an inflating bubble as

the null energy condition is violated and it accompanies the dynamical generation of a

wormhole. Fourth, finding of Type 4 is also a new result. Here, we observed the properties

of r,u = 0 horizons and the energy-momentum tensor; properties of r,u = 0 horizons are

related to the potential V , and to induce inflation, Tuu < 0 seems to be the sufficient

condition. Fifth, we could observe a continuous change of each types as one tunes initial

parameters. In fact, the important parameters are just on shells: ∆u, Φ0, Λ, and effects of

the other parameters may not be important.

– 33 –



J
H
E
P
1
1
(
2
0
0
9
)
0
1
6

5.2 Generation of a bubble universe: discussion on information loss problem

If the false vacuum bubble is greater than the background horizon size, even though the

bubble is separated from the background, it is not so meaningful since an observer of a

scattering experiment is always inside of the bubble. However, in this paper, we discussed

a bubble which is sufficiently smaller than the background horizon size. Therefore, in prin-

ciple, it can be discussed in the context of scattering experiments, and thus the generation

of a bubble universe should be discussed in the context of the information loss problem [29].

The Type 3 and Type 4 solutions induce a separation between the outside true vacuum

region and the inside region. The inside will have a second asymptotic region; Type 3 case

is quite clear in this point. Then, information loss is inevitable unless duplication of

information happens.4 If the background is an anti de Sitter space, one may notice the

AdS/CFT correspondence that implies unitarity [16]. In this context, some authors said

that Farhi-Guth-Guven tunneling should be excluded [10]. In the same sense, we can say

that some assumptions of our setup is inconsistent with unitarity and AdS/CFT. What are

the exotic assumptions of our setup? Firstly, we assumed the existence of exotic matter

fields. Secondly, we assumed some special initial conditions of scalar fields and exotic fields.

Thirdly, a large number of N shells was used to maintain field values.

We can comment on the second assumption. If a bubble is generated in an almost

flat background, it can be described by a field combination for the inside false vacuum

and the outside true vacuum. Here, if the background is a de Sitter space or an anti de

Sitter space, the tunneling is not excluded via the violation of the energy conservation [5].

We found that initial conditions for each types are not quite different; each types transits

continuously (figure 10 and 26). Therefore, if certain initial conditions are excluded by an

unknown reason, the other conditions should be excluded, too; if a combination for Type 2

is possible in principle, then it is difficult to find a reason why a similar initial condition

that generates Type 3 should be excluded.

We can comment on the large number N . To see the r,u = 0 horizon, we do not need

such large N . Also, there are some discussions that string theory seems not exclude a large

number of fields [30].

The most strange assumption is the existence of exotic matter fields. Now, we can say

that if one assumes the existence of the exotic matter fields, the creation of a bubble uni-

verse, dynamical generation of a wormhole and the violation of unitarity become possible.

We show a clear contradiction between the existence of a certain combination of exotic

matter fields and unitarity or AdS/CFT.

Then, the next question is that, does the nature exclude such combination of exotic

fields? One of physically reasonable processes of an exotic matter or the violation of energy

conditions come from Hawking radiation [31, 32]. For a black hole case, Hawking radiation

of negative energy tends to inside of the black hole; however, here we need out-going

negative energy flux. Therefore, it is unclear whether Hawking radiation may be helpful

on this issue. However, if we can control the negative energy flux of Hawking radiation

4Black hole complementarity may be related to this issue. For further discussions, see [9, 28].
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Figure 27. Convergence tests of r for the condition (∆u = 0.1, S0 = 0.1, Λ = 0.001) with potential

Vpoly(S). This shows the second order convergence.

Figure 28. Consistency tests of r by comparing rv−scheme and ru−scheme.

Figure 29. Convergence tests of S for the condition (∆u = 0.1, S0 = 0.1, Λ = 0.001) with potential

Vpoly(S). This shows the second order convergence.
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Figure 30. Consistency tests of S by comparing Sv−scheme and Su−scheme.

Figure 31. Convergence tests of r for the condition (∆u = 0.1, S0 = 0.3, Λ = 0.001) with potential

Vpoly(S). This shows the second order convergence.

to the out-going direction, it will definitely make our first assumption reasonable. These

problems should be discussed later.
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A Convergence and consistency tests

In this appendix, we discuss convergence and consistency tests for our simulations of each

type. Also, we briefly comment on the instability for fast-rolling fields. Here, we check the
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Figure 32. Consistency tests of r by comparing rv−scheme and ru−scheme.

Figure 33. Convergence tests of S for the condition (∆u = 0.1, S0 = 0.3, Λ = 0.001) with potential

Vpoly(S). This shows the second order convergence.

Figure 34. Consistency tests of S by comparing Sv−scheme and Su−scheme.

consistency by comparing the v-scheme and the u-scheme for certain u = constant surfaces.

We check the convergence by comparing 1 × 1, 2 × 2 finer, and 4 × 4 finer simulations for
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Figure 35. Convergence tests of r for the condition (∆u = 0.3, S0 = 0.1, Λ = 0.01, N = 108) with

potential Vphi4(S). This shows the second order convergence.

Figure 36. Consistency tests of r by comparing rv−scheme and ru−scheme.

certain u = constant surfaces. We observed u = 7.5, 12.5, 17.5 slices.

We compared two independent evolutions by using equations for r,uu and r,vv. Then

the equation for r,uv remains a constraint equation. Therefore, we checked the following

quantity to check the constraint equation:

| − r,ur,v/r − α2/4r + 2πα2rV (S) − r,uv|
| − r,ur,v/r| + | − α2/4r| + |2πα2rV (S)| + | − r,uv|

. (A.1)

We checked the constraint equation for v = 10, 20, 40 slices.

Note that simulations in this paper are based on a numerical code of [18]. And these

results could be reproduced consistently from an independent code of [19].

A.1 Type 1

We checked consistency and convergence for the condition (∆u = 0.1, S0 = 0.1,Λ = 0.001)

with potential Vpoly(S). Figure 27 and figure 28 show that errors for r is less than 10−2%.

Figure 29 and figure 30 show that errors for S is almost less than 10−2%, but there are

some peaks which are order of few percents.
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Figure 37. Convergence tests of S for the condition (∆u = 0.3, S0 = 0.1, Λ = 0.01, N = 108) with

potential Vphi4(S). This shows the second order convergence.

Figure 38. Consistency tests of S by comparing Sv−scheme and Su−scheme.

Figure 39. The constraint equation for the condition (∆u = 0.1, S0 = 0.1, Λ = 0.001) with

potential Vpoly(S).
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Figure 40. The constraint equation for the condition (∆u = 0.1, S0 = 0.3, Λ = 0.001) with

potential Vpoly(S).

Figure 41. The constraint equation for the condition (∆u = 0.3, S0 = 0.1, Λ = 0.01, N = 108)

with potential Vphi4(S).

This phenomenon comes from the fast-rolling of the field around the true vacuum.

Near the true vacuum, as the field rolls around 0 point, a small deviation from 0 may

looks like a big error since we need to divide by 0. This is the instability of fast-rolling

fields. If its back-reaction to r is sufficiently small, the instability is negligible. Type 1

holds this case. However, if there exists inflation via fast-rolling fields, one cannot ignore

its back-reaction, and to maintain sufficiently small error for S, we need more and more

finer simulations. This is a practical reason why we consider slow-rolling inflation only.

Figure 27 and figure 29 show |(1×1)− (2×2)|/|(1×1)| and 4|(2×2)− (4×4)|/|(2×2)|
for functions r and S, where (n × n) means an n× n finer simulation. In these figures, for

each u slice, two curves are quite close and seem to be degenerated. These show that our

simulations converge to the second order.

Figure 39 shows the constraint equation for some slices. The violation of the constraint

equation is less than 1% for almost all integrated domains (0 . u . 18).
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A.2 Type 2

We checked consistency and convergence for the condition (∆u = 0.1, S0 = 0.3,Λ = 0.001)

with potential Vpoly(S). Figure 31 and figure 32 show that errors for r is less than 10−2%.

Figure 33 and figure 34 show that errors for S is less than 10−2%. Also, Type 2 solution

converges to second order as well. In this case, there was no instability of fields, since the

field values of the inside false vacuum slowly moves.

Figure 40 shows the constraint equation for some slices. The violation of the constraint

equation is less than 1% for almost all integrated domains (0 . u . 18).

A.3 Type 3 and Type 4

We checked consistency and convergence for the condition (∆u = 0.3, S0 = 0.1,Λ =

0.01, N = 108) with potential Vphi4(S). Figure 35 and figure 36 show that errors for r

is less than 10−3%. Figure 37 and figure 38 show that errors for S is less than 10−4%.

Also, Type 3 solution converges to second order as well.

Finally, figure 41 shows the constraint equation for some slices. The violation of the

constraint equation is less than 0.1% for almost all integrated domains (0 . u . 18).
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